#include "AC_PID_Basic.h" // Constructor AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz) { // load parameter values from eeprom _kp=(initial_p); _ki=(initial_i); _kd=(initial_d); _kff=(initial_ff); _kimax=(initial_imax); _filt_E_hz=(initial_filt_E_hz); _filt_D_hz=(initial_filt_D_hz); // reset input filter to first value received _reset_filter = true; _error=0; } float AC_PID_Basic::update_all(float target, float measurement, float dt, bool limit) { return update_all(target, measurement, dt, (limit && is_negative(_integrator)), (limit && is_positive(_integrator))); } // update_all - set target and measured inputs to PID controller and calculate outputs // target and error are filtered // the derivative is then calculated and filtered // the integral is then updated based on the setting of the limit flag float AC_PID_Basic::update_all(float target, float measurement, float dt, bool limit_neg, bool limit_pos) { // don't process inf or NaN /*if (!isfinite(target) || isnan(target) || !isfinite(measurement) || isnan(measurement)) { INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); return 0.0f; }*/ if(target<0) target+=2*M_PI; if(measurement<0) measurement+=2*M_PI; _error=target-measurement; _target = target; float error_last = _error; if(_error>(M_PI+2.0*M_PI/180.0)) _error=-2*M_PI+_error; if(_error<(-M_PI-2.0*M_PI/180.0)) _error=2*M_PI+_error; _error*=180.0/M_PI; // reset input filter to value received if (_reset_filter) { _reset_filter = false; error_last=_error; //_error = _target - measurement; _derivative = 0.0f; } else { _error += get_filt_E_alpha(dt) * (_error - error_last); // calculate and filter derivative if (is_positive(dt)) { float derivative = (_error - error_last) / dt; _derivative += get_filt_D_alpha(dt) * (derivative - _derivative); } } // update I term update_i(dt, limit_neg, limit_pos); const float P_out = _error * _kp; const float D_out = _derivative * _kd; float out=P_out + _integrator + D_out + _target * _kff; if(out>45.0f) out=45.0f; if(out<-45.0f) out=-45.0f; return out; } // update_i - update the integral // if limit_neg is true, the integral can only increase // if limit_pos is true, the integral can only decrease void AC_PID_Basic::update_i(float dt, bool limit_neg, bool limit_pos) { if (!is_zero(_ki)) { // Ensure that integrator can only be reduced if the output is saturated if (!((limit_neg && is_negative(_error)) || (limit_pos && is_positive(_error)))) { _integrator += ((float)_error * _ki) * dt; _integrator = constrain_float(_integrator, -_kimax, _kimax); } } else { _integrator = 0.0f; } } void AC_PID_Basic::reset_I() { _integrator = 0.0; } // get_filt_T_alpha - get the target filter alpha float AC_PID_Basic::get_filt_E_alpha(float dt) { return calc_lowpass_alpha_dt(dt, _filt_E_hz); } // get_filt_D_alpha - get the derivative filter alpha float AC_PID_Basic::get_filt_D_alpha(float dt) { return calc_lowpass_alpha_dt(dt, _filt_D_hz); } void AC_PID_Basic::set_integrator(float target, float measurement, float i) { set_integrator(target - measurement, i); } void AC_PID_Basic::set_integrator(float error, float i) { set_integrator(i - error * _kp); } void AC_PID_Basic::set_integrator(float i) { _integrator = constrain_float(i, -_kimax, _kimax); } float AC_PID_Basic::calc_lowpass_alpha_dt(float dt, float cutoff_freq) { if (is_negative(dt) || is_negative(cutoff_freq)) { return 1.0; } if (is_zero(cutoff_freq)) { return 0.0; } if (is_zero(dt)) { return 0.0; } float rc = 1.0f / (M_2PI * cutoff_freq); return dt / (dt + rc); }