tarask
6 days ago 532005c6573d95199ce0ffbc33df4c7a0a4c3ef9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#pragma once
// MESSAGE GLOBAL_POSITION_INT_COV PACKING
 
#define MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV 63
 
 
typedef struct __mavlink_global_position_int_cov_t {
 uint64_t time_usec; /*< [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.*/
 int32_t lat; /*< [degE7] Latitude*/
 int32_t lon; /*< [degE7] Longitude*/
 int32_t alt; /*< [mm] Altitude in meters above MSL*/
 int32_t relative_alt; /*< [mm] Altitude above ground*/
 float vx; /*< [m/s] Ground X Speed (Latitude)*/
 float vy; /*< [m/s] Ground Y Speed (Longitude)*/
 float vz; /*< [m/s] Ground Z Speed (Altitude)*/
 float covariance[36]; /*<  Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.*/
 uint8_t estimator_type; /*<  Class id of the estimator this estimate originated from.*/
} mavlink_global_position_int_cov_t;
 
#define MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN 181
#define MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN 181
#define MAVLINK_MSG_ID_63_LEN 181
#define MAVLINK_MSG_ID_63_MIN_LEN 181
 
#define MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC 119
#define MAVLINK_MSG_ID_63_CRC 119
 
#define MAVLINK_MSG_GLOBAL_POSITION_INT_COV_FIELD_COVARIANCE_LEN 36
 
#if MAVLINK_COMMAND_24BIT
#define MAVLINK_MESSAGE_INFO_GLOBAL_POSITION_INT_COV { \
    63, \
    "GLOBAL_POSITION_INT_COV", \
    10, \
    {  { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_global_position_int_cov_t, time_usec) }, \
         { "estimator_type", NULL, MAVLINK_TYPE_UINT8_T, 0, 180, offsetof(mavlink_global_position_int_cov_t, estimator_type) }, \
         { "lat", NULL, MAVLINK_TYPE_INT32_T, 0, 8, offsetof(mavlink_global_position_int_cov_t, lat) }, \
         { "lon", NULL, MAVLINK_TYPE_INT32_T, 0, 12, offsetof(mavlink_global_position_int_cov_t, lon) }, \
         { "alt", NULL, MAVLINK_TYPE_INT32_T, 0, 16, offsetof(mavlink_global_position_int_cov_t, alt) }, \
         { "relative_alt", NULL, MAVLINK_TYPE_INT32_T, 0, 20, offsetof(mavlink_global_position_int_cov_t, relative_alt) }, \
         { "vx", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_global_position_int_cov_t, vx) }, \
         { "vy", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_global_position_int_cov_t, vy) }, \
         { "vz", NULL, MAVLINK_TYPE_FLOAT, 0, 32, offsetof(mavlink_global_position_int_cov_t, vz) }, \
         { "covariance", NULL, MAVLINK_TYPE_FLOAT, 36, 36, offsetof(mavlink_global_position_int_cov_t, covariance) }, \
         } \
}
#else
#define MAVLINK_MESSAGE_INFO_GLOBAL_POSITION_INT_COV { \
    "GLOBAL_POSITION_INT_COV", \
    10, \
    {  { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_global_position_int_cov_t, time_usec) }, \
         { "estimator_type", NULL, MAVLINK_TYPE_UINT8_T, 0, 180, offsetof(mavlink_global_position_int_cov_t, estimator_type) }, \
         { "lat", NULL, MAVLINK_TYPE_INT32_T, 0, 8, offsetof(mavlink_global_position_int_cov_t, lat) }, \
         { "lon", NULL, MAVLINK_TYPE_INT32_T, 0, 12, offsetof(mavlink_global_position_int_cov_t, lon) }, \
         { "alt", NULL, MAVLINK_TYPE_INT32_T, 0, 16, offsetof(mavlink_global_position_int_cov_t, alt) }, \
         { "relative_alt", NULL, MAVLINK_TYPE_INT32_T, 0, 20, offsetof(mavlink_global_position_int_cov_t, relative_alt) }, \
         { "vx", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_global_position_int_cov_t, vx) }, \
         { "vy", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_global_position_int_cov_t, vy) }, \
         { "vz", NULL, MAVLINK_TYPE_FLOAT, 0, 32, offsetof(mavlink_global_position_int_cov_t, vz) }, \
         { "covariance", NULL, MAVLINK_TYPE_FLOAT, 36, 36, offsetof(mavlink_global_position_int_cov_t, covariance) }, \
         } \
}
#endif
 
/**
 * @brief Pack a global_position_int_cov message
 * @param system_id ID of this system
 * @param component_id ID of this component (e.g. 200 for IMU)
 * @param msg The MAVLink message to compress the data into
 *
 * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
 * @param estimator_type  Class id of the estimator this estimate originated from.
 * @param lat [degE7] Latitude
 * @param lon [degE7] Longitude
 * @param alt [mm] Altitude in meters above MSL
 * @param relative_alt [mm] Altitude above ground
 * @param vx [m/s] Ground X Speed (Latitude)
 * @param vy [m/s] Ground Y Speed (Longitude)
 * @param vz [m/s] Ground Z Speed (Altitude)
 * @param covariance  Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.
 * @return length of the message in bytes (excluding serial stream start sign)
 */
static inline uint16_t mavlink_msg_global_position_int_cov_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
                               uint64_t time_usec, uint8_t estimator_type, int32_t lat, int32_t lon, int32_t alt, int32_t relative_alt, float vx, float vy, float vz, const float *covariance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
    char buf[MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN];
    _mav_put_uint64_t(buf, 0, time_usec);
    _mav_put_int32_t(buf, 8, lat);
    _mav_put_int32_t(buf, 12, lon);
    _mav_put_int32_t(buf, 16, alt);
    _mav_put_int32_t(buf, 20, relative_alt);
    _mav_put_float(buf, 24, vx);
    _mav_put_float(buf, 28, vy);
    _mav_put_float(buf, 32, vz);
    _mav_put_uint8_t(buf, 180, estimator_type);
    _mav_put_float_array(buf, 36, covariance, 36);
        memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
#else
    mavlink_global_position_int_cov_t packet;
    packet.time_usec = time_usec;
    packet.lat = lat;
    packet.lon = lon;
    packet.alt = alt;
    packet.relative_alt = relative_alt;
    packet.vx = vx;
    packet.vy = vy;
    packet.vz = vz;
    packet.estimator_type = estimator_type;
    mav_array_memcpy(packet.covariance, covariance, sizeof(float)*36);
        memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
#endif
 
    msg->msgid = MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV;
    return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
}
 
/**
 * @brief Pack a global_position_int_cov message on a channel
 * @param system_id ID of this system
 * @param component_id ID of this component (e.g. 200 for IMU)
 * @param chan The MAVLink channel this message will be sent over
 * @param msg The MAVLink message to compress the data into
 * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
 * @param estimator_type  Class id of the estimator this estimate originated from.
 * @param lat [degE7] Latitude
 * @param lon [degE7] Longitude
 * @param alt [mm] Altitude in meters above MSL
 * @param relative_alt [mm] Altitude above ground
 * @param vx [m/s] Ground X Speed (Latitude)
 * @param vy [m/s] Ground Y Speed (Longitude)
 * @param vz [m/s] Ground Z Speed (Altitude)
 * @param covariance  Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.
 * @return length of the message in bytes (excluding serial stream start sign)
 */
static inline uint16_t mavlink_msg_global_position_int_cov_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
                               mavlink_message_t* msg,
                                   uint64_t time_usec,uint8_t estimator_type,int32_t lat,int32_t lon,int32_t alt,int32_t relative_alt,float vx,float vy,float vz,const float *covariance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
    char buf[MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN];
    _mav_put_uint64_t(buf, 0, time_usec);
    _mav_put_int32_t(buf, 8, lat);
    _mav_put_int32_t(buf, 12, lon);
    _mav_put_int32_t(buf, 16, alt);
    _mav_put_int32_t(buf, 20, relative_alt);
    _mav_put_float(buf, 24, vx);
    _mav_put_float(buf, 28, vy);
    _mav_put_float(buf, 32, vz);
    _mav_put_uint8_t(buf, 180, estimator_type);
    _mav_put_float_array(buf, 36, covariance, 36);
        memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
#else
    mavlink_global_position_int_cov_t packet;
    packet.time_usec = time_usec;
    packet.lat = lat;
    packet.lon = lon;
    packet.alt = alt;
    packet.relative_alt = relative_alt;
    packet.vx = vx;
    packet.vy = vy;
    packet.vz = vz;
    packet.estimator_type = estimator_type;
    mav_array_memcpy(packet.covariance, covariance, sizeof(float)*36);
        memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
#endif
 
    msg->msgid = MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV;
    return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
}
 
/**
 * @brief Encode a global_position_int_cov struct
 *
 * @param system_id ID of this system
 * @param component_id ID of this component (e.g. 200 for IMU)
 * @param msg The MAVLink message to compress the data into
 * @param global_position_int_cov C-struct to read the message contents from
 */
static inline uint16_t mavlink_msg_global_position_int_cov_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_global_position_int_cov_t* global_position_int_cov)
{
    return mavlink_msg_global_position_int_cov_pack(system_id, component_id, msg, global_position_int_cov->time_usec, global_position_int_cov->estimator_type, global_position_int_cov->lat, global_position_int_cov->lon, global_position_int_cov->alt, global_position_int_cov->relative_alt, global_position_int_cov->vx, global_position_int_cov->vy, global_position_int_cov->vz, global_position_int_cov->covariance);
}
 
/**
 * @brief Encode a global_position_int_cov struct on a channel
 *
 * @param system_id ID of this system
 * @param component_id ID of this component (e.g. 200 for IMU)
 * @param chan The MAVLink channel this message will be sent over
 * @param msg The MAVLink message to compress the data into
 * @param global_position_int_cov C-struct to read the message contents from
 */
static inline uint16_t mavlink_msg_global_position_int_cov_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_global_position_int_cov_t* global_position_int_cov)
{
    return mavlink_msg_global_position_int_cov_pack_chan(system_id, component_id, chan, msg, global_position_int_cov->time_usec, global_position_int_cov->estimator_type, global_position_int_cov->lat, global_position_int_cov->lon, global_position_int_cov->alt, global_position_int_cov->relative_alt, global_position_int_cov->vx, global_position_int_cov->vy, global_position_int_cov->vz, global_position_int_cov->covariance);
}
 
/**
 * @brief Send a global_position_int_cov message
 * @param chan MAVLink channel to send the message
 *
 * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
 * @param estimator_type  Class id of the estimator this estimate originated from.
 * @param lat [degE7] Latitude
 * @param lon [degE7] Longitude
 * @param alt [mm] Altitude in meters above MSL
 * @param relative_alt [mm] Altitude above ground
 * @param vx [m/s] Ground X Speed (Latitude)
 * @param vy [m/s] Ground Y Speed (Longitude)
 * @param vz [m/s] Ground Z Speed (Altitude)
 * @param covariance  Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.
 */
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
 
static inline void mavlink_msg_global_position_int_cov_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t estimator_type, int32_t lat, int32_t lon, int32_t alt, int32_t relative_alt, float vx, float vy, float vz, const float *covariance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
    char buf[MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN];
    _mav_put_uint64_t(buf, 0, time_usec);
    _mav_put_int32_t(buf, 8, lat);
    _mav_put_int32_t(buf, 12, lon);
    _mav_put_int32_t(buf, 16, alt);
    _mav_put_int32_t(buf, 20, relative_alt);
    _mav_put_float(buf, 24, vx);
    _mav_put_float(buf, 28, vy);
    _mav_put_float(buf, 32, vz);
    _mav_put_uint8_t(buf, 180, estimator_type);
    _mav_put_float_array(buf, 36, covariance, 36);
    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, buf, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#else
    mavlink_global_position_int_cov_t packet;
    packet.time_usec = time_usec;
    packet.lat = lat;
    packet.lon = lon;
    packet.alt = alt;
    packet.relative_alt = relative_alt;
    packet.vx = vx;
    packet.vy = vy;
    packet.vz = vz;
    packet.estimator_type = estimator_type;
    mav_array_memcpy(packet.covariance, covariance, sizeof(float)*36);
    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, (const char *)&packet, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#endif
}
 
/**
 * @brief Send a global_position_int_cov message
 * @param chan MAVLink channel to send the message
 * @param struct The MAVLink struct to serialize
 */
static inline void mavlink_msg_global_position_int_cov_send_struct(mavlink_channel_t chan, const mavlink_global_position_int_cov_t* global_position_int_cov)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
    mavlink_msg_global_position_int_cov_send(chan, global_position_int_cov->time_usec, global_position_int_cov->estimator_type, global_position_int_cov->lat, global_position_int_cov->lon, global_position_int_cov->alt, global_position_int_cov->relative_alt, global_position_int_cov->vx, global_position_int_cov->vy, global_position_int_cov->vz, global_position_int_cov->covariance);
#else
    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, (const char *)global_position_int_cov, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#endif
}
 
#if MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN <= MAVLINK_MAX_PAYLOAD_LEN
/*
  This variant of _send() can be used to save stack space by re-using
  memory from the receive buffer.  The caller provides a
  mavlink_message_t which is the size of a full mavlink message. This
  is usually the receive buffer for the channel, and allows a reply to an
  incoming message with minimum stack space usage.
 */
static inline void mavlink_msg_global_position_int_cov_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan,  uint64_t time_usec, uint8_t estimator_type, int32_t lat, int32_t lon, int32_t alt, int32_t relative_alt, float vx, float vy, float vz, const float *covariance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
    char *buf = (char *)msgbuf;
    _mav_put_uint64_t(buf, 0, time_usec);
    _mav_put_int32_t(buf, 8, lat);
    _mav_put_int32_t(buf, 12, lon);
    _mav_put_int32_t(buf, 16, alt);
    _mav_put_int32_t(buf, 20, relative_alt);
    _mav_put_float(buf, 24, vx);
    _mav_put_float(buf, 28, vy);
    _mav_put_float(buf, 32, vz);
    _mav_put_uint8_t(buf, 180, estimator_type);
    _mav_put_float_array(buf, 36, covariance, 36);
    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, buf, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#else
    mavlink_global_position_int_cov_t *packet = (mavlink_global_position_int_cov_t *)msgbuf;
    packet->time_usec = time_usec;
    packet->lat = lat;
    packet->lon = lon;
    packet->alt = alt;
    packet->relative_alt = relative_alt;
    packet->vx = vx;
    packet->vy = vy;
    packet->vz = vz;
    packet->estimator_type = estimator_type;
    mav_array_memcpy(packet->covariance, covariance, sizeof(float)*36);
    _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, (const char *)packet, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#endif
}
#endif
 
#endif
 
// MESSAGE GLOBAL_POSITION_INT_COV UNPACKING
 
 
/**
 * @brief Get field time_usec from global_position_int_cov message
 *
 * @return [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
 */
static inline uint64_t mavlink_msg_global_position_int_cov_get_time_usec(const mavlink_message_t* msg)
{
    return _MAV_RETURN_uint64_t(msg,  0);
}
 
/**
 * @brief Get field estimator_type from global_position_int_cov message
 *
 * @return  Class id of the estimator this estimate originated from.
 */
static inline uint8_t mavlink_msg_global_position_int_cov_get_estimator_type(const mavlink_message_t* msg)
{
    return _MAV_RETURN_uint8_t(msg,  180);
}
 
/**
 * @brief Get field lat from global_position_int_cov message
 *
 * @return [degE7] Latitude
 */
static inline int32_t mavlink_msg_global_position_int_cov_get_lat(const mavlink_message_t* msg)
{
    return _MAV_RETURN_int32_t(msg,  8);
}
 
/**
 * @brief Get field lon from global_position_int_cov message
 *
 * @return [degE7] Longitude
 */
static inline int32_t mavlink_msg_global_position_int_cov_get_lon(const mavlink_message_t* msg)
{
    return _MAV_RETURN_int32_t(msg,  12);
}
 
/**
 * @brief Get field alt from global_position_int_cov message
 *
 * @return [mm] Altitude in meters above MSL
 */
static inline int32_t mavlink_msg_global_position_int_cov_get_alt(const mavlink_message_t* msg)
{
    return _MAV_RETURN_int32_t(msg,  16);
}
 
/**
 * @brief Get field relative_alt from global_position_int_cov message
 *
 * @return [mm] Altitude above ground
 */
static inline int32_t mavlink_msg_global_position_int_cov_get_relative_alt(const mavlink_message_t* msg)
{
    return _MAV_RETURN_int32_t(msg,  20);
}
 
/**
 * @brief Get field vx from global_position_int_cov message
 *
 * @return [m/s] Ground X Speed (Latitude)
 */
static inline float mavlink_msg_global_position_int_cov_get_vx(const mavlink_message_t* msg)
{
    return _MAV_RETURN_float(msg,  24);
}
 
/**
 * @brief Get field vy from global_position_int_cov message
 *
 * @return [m/s] Ground Y Speed (Longitude)
 */
static inline float mavlink_msg_global_position_int_cov_get_vy(const mavlink_message_t* msg)
{
    return _MAV_RETURN_float(msg,  28);
}
 
/**
 * @brief Get field vz from global_position_int_cov message
 *
 * @return [m/s] Ground Z Speed (Altitude)
 */
static inline float mavlink_msg_global_position_int_cov_get_vz(const mavlink_message_t* msg)
{
    return _MAV_RETURN_float(msg,  32);
}
 
/**
 * @brief Get field covariance from global_position_int_cov message
 *
 * @return  Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.
 */
static inline uint16_t mavlink_msg_global_position_int_cov_get_covariance(const mavlink_message_t* msg, float *covariance)
{
    return _MAV_RETURN_float_array(msg, covariance, 36,  36);
}
 
/**
 * @brief Decode a global_position_int_cov message into a struct
 *
 * @param msg The message to decode
 * @param global_position_int_cov C-struct to decode the message contents into
 */
static inline void mavlink_msg_global_position_int_cov_decode(const mavlink_message_t* msg, mavlink_global_position_int_cov_t* global_position_int_cov)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
    global_position_int_cov->time_usec = mavlink_msg_global_position_int_cov_get_time_usec(msg);
    global_position_int_cov->lat = mavlink_msg_global_position_int_cov_get_lat(msg);
    global_position_int_cov->lon = mavlink_msg_global_position_int_cov_get_lon(msg);
    global_position_int_cov->alt = mavlink_msg_global_position_int_cov_get_alt(msg);
    global_position_int_cov->relative_alt = mavlink_msg_global_position_int_cov_get_relative_alt(msg);
    global_position_int_cov->vx = mavlink_msg_global_position_int_cov_get_vx(msg);
    global_position_int_cov->vy = mavlink_msg_global_position_int_cov_get_vy(msg);
    global_position_int_cov->vz = mavlink_msg_global_position_int_cov_get_vz(msg);
    mavlink_msg_global_position_int_cov_get_covariance(msg, global_position_int_cov->covariance);
    global_position_int_cov->estimator_type = mavlink_msg_global_position_int_cov_get_estimator_type(msg);
#else
        uint8_t len = msg->len < MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN? msg->len : MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN;
        memset(global_position_int_cov, 0, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
    memcpy(global_position_int_cov, _MAV_PAYLOAD(msg), len);
#endif
}